

Unit C2, Nutgrove Office Park, Rathfarnham, Dublin 14, D14CR20 T. 01 2051101 E. info@poga.ie W. poga.ie

Engineering Service Report

St Patrick's Park - Rathangan, Co Kildare

Engineering Service Report

St Patrick's Park - Rathangan, Co Kildare

October 2022

Notice

This document and its contents have been prepared and are intended solely for the commissioning client and the project named above.

POGA Consulting Engineers assumes no responsibility to any other party in respect of or arising out of or in connection with this document and / or its contents.

Document History

JOB NUMB	ER: 1668		DOCUMENT REF: 1668_ESR R0.docx				
RO	Part 8 Planning Issue	NM	СВ	PM	PM	19/10/2022	
Revision	Purpose Description	Originated	Checked	Reviewed	Authorised	Date	

Contents

1.0	INTRODUCTION	. 4
2.0	EXISTING SERVICES	. 5
3.0	PROPOSED SURFACE WATER MANAGEMENT	. 6
4.0	WASTEWATER	. 8
5.0	WATER SUPPLY	. 9
6.0	ACCESS AND SIGHT LINES	10
7.0	APPENDICES	11
7.1	APPENDIX A – EXISTING SERVICE MAPPING	11
7.2	APPENDIX B – FLOOD MAPPING	L4
7.3	APPENDIX C – RAINFALL DATA	16
7.4	APPENDIX D – QBAR CALCULATION	18
7.5	APPENDIX E – PAVED AREA FACTORS EXISTING & PROPOSED	20
7.6	APPENDIX F – ATTENUATION VOLUME CAPACITY CHECK	23
7.7	APPENDIX G – EXISTING ATTENUATION DETAILS	36
7.8	APPENDIX H – PROPOSED STORMTECH ATTENUATION SYSTEM	42
7.9	APPENDIX J – SURFACE WATER PIPE DESIGN	14
7.10	O APPENDIX K – WASTEWATER PIPE DESIGN	48
7.11	APPENDIX L – WATER & WASTEWATER DEMAND CALCULATIONS	52
7.12	2 APPENDIX M – IRISH WATER CONFIRMATION OF FEASIBILITY	54

1.0 INTRODUCTION

The subject site is located at St Patrick's Park, Rathangan, County Kildare. The rectangular shaped site is approximately 3.6 Ha in size and is currently forms part of the existing St Patrick's Park housing estate. The Kildare Road (R401) bounds the site to the North, agricultural lands to the West and South, and residential units to the East. The topography of the site is relatively flat with a slight slope from South East to North West falling 1m over a length of 195m giving an approximate slope of 1:195.

As part of this Part VIII Application, it is proposed to demolish a number of existing houses, construct 7 new dwellings and refurbish 25 units at the site. Road upgrade works, additional car parking, drainage, wastewater and watermain works are also proposed.

Figure 1.1 Proposed Site Plan

This report should be read in conjunction with POGA Consulting Engineers drawings and all other Consultants' reports and drawings.

The engineering drainage design philosophy is outlined below and detailed calculations are contained in the Appendices of this report.

2.0 EXISTING SERVICES

Appendix A shows the Irish Water map of the existing drainage and watermain networks in the vicinity of the subject site.

Wastewater Sewer

There is an existing ø225mm uPVC sewer network which flows northwards through the existing development outfalling into the public sewer on Kildare Road (R401). It is proposed to connect to the existing network at several points where new housing is provided.

Surface Water

There is an existing $\emptyset150$ mm uPVC surface network at the site servicing the existing dwellings, please refer to Appendix A for existing drainage mapping. From our review of the existing mapping, existing drawings and site walk over it was established that there is a $\emptyset450$ mm surface water network flowing around the perimeter of the site which connects to an attenuation system located at the south eastern boundary. The surface water flows south in a $\emptyset450$ mm pipe and outfalls into an open ditch 150m to the South of the site.

Water

There is an existing Ø100mm uPVC watermain servicing the existing site. It is proposed to upgrade sections of the existing network to include for the seven new dwellings.

Flooding

Appendix B contains the predicted 1:100 year flood risk draft maps produced as part of the South Eastern CFRAM program. The mapping highlights fluvial flooding events in the vicinity of the site. The predicted 1:100 flooding on the River Slate however, occurs approximately 0.75km to the North of the site. The 1:100 year flood levels at the River Slate are over 12m below the lowest level of the subject site. The risk of flooding at the site is deemed to be extremely low.

3.0 PROPOSED SURFACE WATER MANAGEMENT

The management of surface water for the proposed development has been designed to comply with the policies and guidelines of the Greater Dublin Strategic Drainage Study (GDSDS). The overall objective is to minimise stormwater runoff and to collect and treat this minimised amount of runoff as close to the source as possible.

3.1 Existing Surface Water Strategy

From our discussions with the local authority and our site walk over it was noted that in the past St Patrick's Park has suffered from some localised flooding where some storm water gullies surcharged during storm events. Remedial works were carried out by Kildare County Council to alleviate the surface water issues. A Ø450mm perimeter drainage system was constructed to carry the surface water run off into an attenuation tank system, located at the south eastern boundary of the site. The perimeter drainage, petrol interceptor and attenuation system were installed, please refer to Appendix G for the existing details.

3.2 SuDS Techniques

As part of the "grey to green" surface water treatment philosophy, it is proposed to use tree pits as a form of interception, treatment and attenuation for the surface water run off from the proposed car parks at the site, please refer to Drawing 1668 101 for locations. It is proposed to use 8No tree pits at the subject site. Each tree pit is filled with 14m³ of urban soil with a capacity for 6.3m³ of surface water attenuation (50.4m³ in total), please refer to Drawing 1668 106 for details. The use of the urban soil tree pits will reduce the demand on the existing attenuation system by providing 50.4m³ of added storage capacity.

Each tree pit is designed to be fitted with an overflow pipe connecting back to surface water network to ensure that the tree is not flooded in storm events. In extreme events the flooded tree pit could lead to the roots dying. However, it is proposed to add a permanent plug on the outflow from each tree pit to ensure that there is always a certain level water to sustain the tree, refer to Drawing 1668 101 for details.

3.3 Surface Water Drainage Design

It is proposed to intercept, treat and attenuate the rainfall water falling on the site using the methods mentioned in section 3.2. The outflow from the varies hardstanding areas and SuDS systems will then be collected in a pipe system and be routed to the existing attenuation system on the South Eastern boundary of the site before discharging into the existing surface water network. The existing Ø450mm surface network outfalls into a ditch 200m to the South East of the site.

It is proposed to install a Hydrobreak on the new outfall manhole (S52) located after the attenuation systems located at the south eastern boundary of the site. The GDSDS allows for development sites to discharge surface water at either the greenfield or brownfield run off rate. We are proposing to use the GDSDS recommended Qbar formula as described in the Institute of Hydrology Report No 124 and then apply an interpolated rate for site less than 50ha. This gives a total outflow of 5.7l/s, please refer to Appendix D for Qbar calculations.

Attenuation Capacity Check

As part of his planning application, we have completed a capacity check on the existing attenuation system. The attenuation system check was to store the 1 in 100 year storm event plus 20% for climate change for the drained area of 2.48ha. The capacity of the existing Stormtech system is 273m³ (refer to Appendix G), from our calculations a volume of 433m³ is required to service the subject site. It is proposed to add a new Stormtech attenuation system downstream of the existing to increase the attenuation capacity, please refer to Figure 3.1 for details.

Refer to Appendix C for rainfall runoff rates and the calculation of Qbar and Appendix D for Paved Area Factors. The following runs off rates factors have been applied to the scheme to calculate the Percentage Run off or PIMP:

- 1. 95% from existing and proposed roofs
- 2. 85% from existing and proposed roads/hardstanding
- 3. 5% from grassed areas
- 4. 40% from parking areas & roads draining to tree pits.

STORAGE PROVISION						
SUDS techniques Interception+Treatment Required Provid						
Tree pits	50.4m³	Х	50.4m			
Existing Attenuation Tank	X	416m³	273m³			
Proposed Attenuation Tank	X	Х	97m³			
TOTAL	420.4m³ > 416m³ OK!					

Figure 3.1 Storage requirement and provision

Pipe Design

All surface water pipes sizes and gradients are designed in accordance with the Department of Environment Recommendation for Site Development Works, Building Regulations and Irish Water Standards.

Please refer to drawing 1668 101 P0 for a drainage layout and. Also refer to drawing 1668 104 P0 for manhole and typical drainage details.

4.0 WASTEWATER

All wastewater pipes sizes and gradients are designed in accordance with the Department of Environment Recommendation for Site Development Works, Building Regulations and Irish Water Standards.

It is proposed to form new connections into the existing Ø225mm wastewater sewer that flows through the site outfalling at the Kildare Road (R401) to the North. There are sections of existing domestic wastewater drainage that will be diverted in order to construct the new dwellings.

All connections to the public wastewater infrastructure will be made following a connection agreement with Irish Water and under their direction. Refer to drawing 1668 101 P0 for drainage details.

5.0 WATER SUPPLY

It is proposed to upgrade sections of the existing Ø100mm uPVC watermain at the site. The proposed new loop of watermain will be Ø100mm HDPE or as directed by Irish Water. An individual boundary box will be provided at each new dwelling, in accordance with Irish Water standards.

All connection to the public water infrastructure will be made following a connection agreement with Irish Water and under their direction. Refer to Drawing 1668 102 P0 for the watermain layout.

5.1 Water Conservation and Management

To conserve water the following is proposed;

- 1. All bathroom and staff facilities to be fitted with low flow fittings such as taps, shower head, etc.
- 2. All electrical appliances will be A energy rated.
- 3. All bathrooms will be fitted with dual flush toilet cisterns

6.0 ACCESS AND SIGHT LINES

The site is accessed of the existing St Patrick's Park Road. It is proposed to upgrade sections of the internal roads in accordance with the Design Manual for Urban Road and Streets (DMURS) for a 30kph main road speed limit. New car parking spaces and sections of footpath are also provided at the site, please refer to drawings 1668 100 & 103 for road layout.

A swept path analysis was completed for a Fire Tender and Refuse truck access, please refer to drawing 1668 103 for details.

Report by; Noel Mahon MEng MIEI

7.0 APPENDICES

7.1 APPENDIX A – EXISTING SERVICE MAPPING

1/30/2018 2:03:36 PM

© Ordnance Survey Ireland | © Ordnance Survey Ireland |

Legend

Stormwater Gravity Mains (Irish Water Owned)

Surface

Stormwater Gravity Mains (Non-Irish Water Owned)

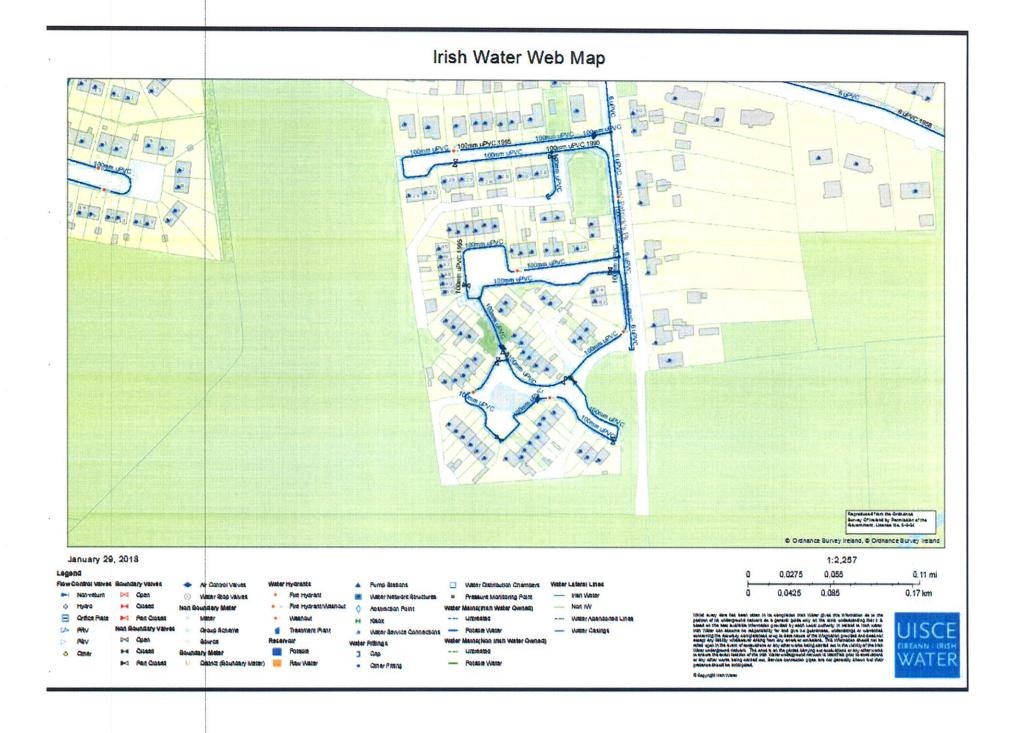
Surface

Storm Manholes

Standard

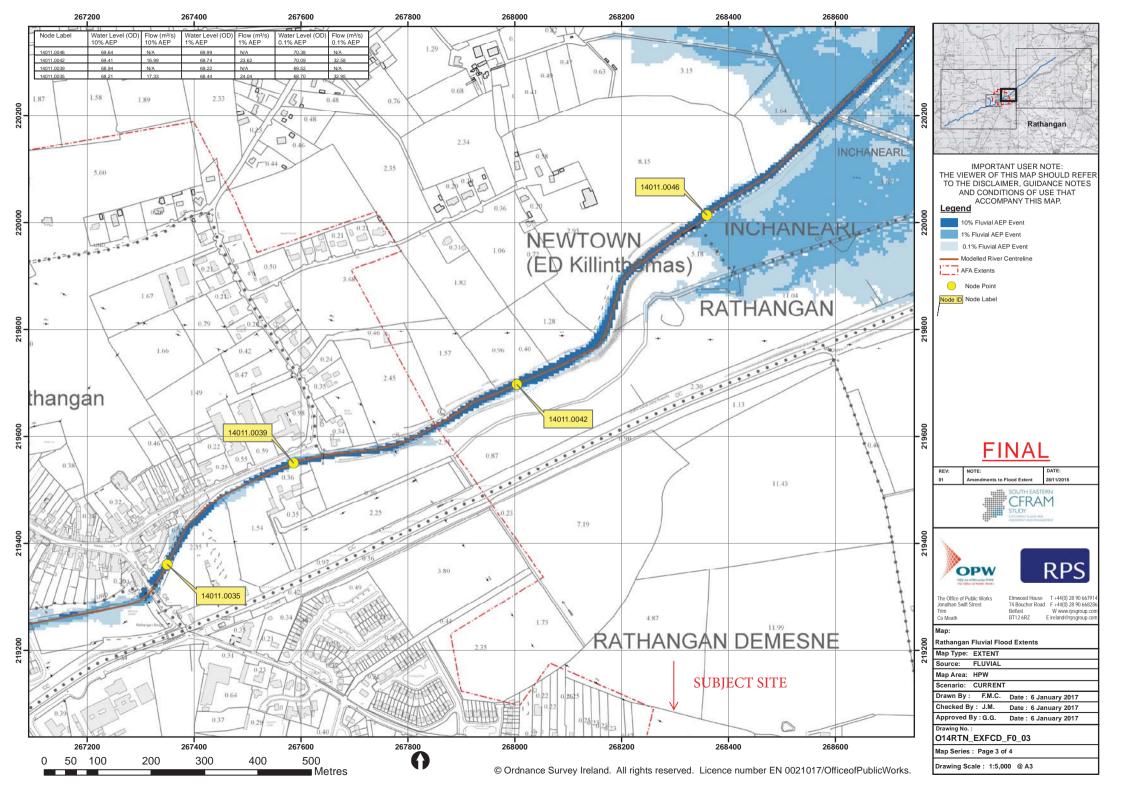
Other; Unknown

Hatchbox



Lamphole

Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland. It should not be relied upon in the event of excavations or other works being carried out in the vicinity of the network. The onus is on the parties carrying out the works to ensure the exact location of the network is identified prior to mechanical works being carried out. Service pipes are not generally shown but their presence should be



"Gas Networks Ireland (GNI), their affiliates and assigns, accept no responsibility for any information contained in this document concerning location and technical designation of the gas distribution and transmission network ("the Information"). Any representations and warranties express or implied, are excluded to the fullest extent permitted by law. No liability shall be accepted for any loss or damage including, without limitation, direct, indirect, special, incidental, punitive or consequential loss including loss of profits, arising out of or in connection with the use of the Information (including maps or mapping data). NOTE: DIAL BEFORE YOU DIG Phone 1850 427 747 or e-mail dig@gasnetworks.ie - The actual position of the gas/electricity distribution and transmission network must be verified on site before any mechanical excavating takes place. If any mechanical excavation is proposed, hard copy maps must be requested from GNI re gas. All work in the vicinity of the gas distribution and transmission network must be completed in accordance with the current edition of the Health & Safety Authority publication, 'Code of Practice For Avoiding Danger From Underground Services' which is available from the Health and Safety Authority (1890 28 93 89) or can be downloaded free of charge at www.hsa.ie."

7.2 APPENDIX B — FLOOD MAPPING CFRAM STUDY

7.3 APPENDIX C - RAINFALL DATA

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 267934, Northing: 218876,

	Inter	rval						Years								
DURATION	6months,	lyear,	2,	3,	4,	5,	10,	20,	30,	50,	75,	100,	150,	200,	250,	500,
5 mins	2.7,	3.7,	4.2,	5.0,	5.5,	5.9,	7.1,	8.5,	9.4,	10.6,	11.7,	12.6,	13.9,	14.9,	15.7,	N/A ,
10 mins	3.8,	5.1,	5.9,	6.9,	7.6,	8.2,	9.9,	11.8,	13.1,	14.8,	16.4,	17.5,	19.3,	20.7,	21.9,	N/A ,
15 mins	4.5,	6.1,	6.9,	8.1,	9.0,	9.6,	11.6,	13.9,	15.4,	17.5,	19.3,	20.6,	22.8,	24.4,	25.7,	N/A ,
30 mins	5.9,	7.9,	8.9,	10.5,	11.5,	12.3,	14.8,	17.5,	19.3,	21.7,	23.9,	25.5,	28.0,	29.9,	31.5,	N/A ,
1 hours	7.8,	10.3,	11.6,	13.5,	14.7,	15.7,	18.7,	22.0,	24.2,	27.1,	29.6,	31.6,	34.5,	36.7,	38.6,	N/A ,
2 hours	10.3,	13.4,	15.0,	17.4,	18.9,	20.0,	23.7,	27.7,	30.2,	33.7,	36.7,	39.0,	42.5,	45.1,	47.2,	N/A ,
3 hours	12.1,	15.7,	17.5,	20.1,	21.8,	23.1,	27.3,	31.7,	34.5,	38.3,	41.7,	44.2,	48.0,	50.8,	53.2,	N/A ,
4 hours	13.6,	17.5,	19.5,	22.4,	24.2,	25.6,	30.1,	34.8,	37.9,	42.0,	45.5,	48.2,	52.3,	55.4,	57.9 ,	N/A ,
6 hours	16.0,	20.5,	22.7,	25.9,	28.0,	29.6,	34.5,	39.8,	43.2,	47.7,	51.7,	54.6,	59.0,	62.4,	65.1,	N/A ,
9 hours	18.8,	23.9,	26.4,	30.0,	32.4,	34.2,	39.7,	45.6,	49.3,	54.3,	58.6,	61.8,	66.7,	70.3,	73.3,	N/A ,
12 hours	21.1,	26.7,	29.4,	33.4,	35.9,	37.8,	43.8,	50.1,	54.1,	59.5,	64.1,	67.5,	72.7,	76.6,	79.8,	N/A ,
18 hours	24.9,	31.2,	34.3,	38.7,	41.5,	43.7,	50.3,	57.3,	61.7,	67.6,	72.7,	76.4,	82.1,	86.3,	89.8,	N/A ,
24 hours	27.9,	34.8,	38.2,	43.0,	46.0,	48.3,	55.5,	63.0,	67.7,	74.1,	79.4,	83.5,	89.5,	94.0,	97.7,	109.9,
2 days	33.5,	41.1,	44.7,	49.9,	53.2,	55.7,	63.3,	71.2,	76.1,	82.7,	88.2,	92.4,	98.5,	103.1,	106.8,	119.2,
3 days	38.4,	46.6,	50.5,	56.1,	59.6,	62.3,	70.3,	78.7,	83.9,	90.8,	96.6,	100.9,	107.3,	112.1,	115.9,	128.7,
4 days	42.8,	51.6,	55.8,	61.7,	65.5,	68.3,	76.8,	85.6,	91.1,	98.3,	104.3,	108.8,	115.5,	120.5,	124.4,	137.7,
6 days	50.8,	60.7,	65.4,	72.0,	76.1,	79.2,	88.6,	98.2,	104.1,	111.9,	118.5,	123.4,	130.5,	135.8,	140.1,	154.2,
8 days	58.2,	69.0,	74.2,	81.3,	85.8,	89.2,	99.3,	109.7,	116.0,	124.4,	131.4,	136.6,	144.2,	149.8,	154.4,	169.3,
10 days	65.1,	76.8,	82.4,	90.1,	94.9,	98.5,	109.3,	120.4,	127.1,	136.0,	143.4,	148.9,	156.9,	162.9,	167.7,	183.4,
12 days	71.7,	84.2,	90.2,	98.4,	103.5,	107.3,	118.8,	130.5,	137.6,	147.0,	154.8,	160.6,	169.0,	175.3,	180.3,	196.7,
16 days	84.2,	98.3,	105.0,	114.1,	119.8,	124.0,	136.7,	149.6,	157.4,	167.7,	176.2,	182.5,	191.7,	198.5,	203.9,	221.7,
20 days	96.1,	111.7,	119.0,	129.0,	135.2,	139.8,	153.6,	167.6,	176.0,	187.1,	196.3,	203.0,	212.9,	220.2,	226.0,	245.0,
25 days	110.5,	127.7,	135.7,	146.7,	153.5,	158.6,	173.7,	188.9,	198.1,	210.1,	220.0,	227.3,	238.0,	245.9,	252.1,	272.6,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

M5 60 = 15.7

M5 2 day = 55.7

Ratio = 0.28

7.4 APPENDIX D – QBAR CALCULATION

Pat O'Gorman & Associates		Page 1
Unit C2, Nutgrove Office Par	1660 Ct Dataialda Daula Dathanaan	
Republic of Ireland	1668 St Patrick's Park, Rathangan	
D14 CR20	Qbar	Micro
Date 26/01/2021 14:49	Designed by NMahon	Drainage
File	Checked by	Dialilade
Innovyze	Source Control 2019.1	

IH 124 Mean Annual Flood

Input

Return Period (years) 100 Soil 0.300
Area (ha) 50.000 Urban 0.000
SAAR (mm) 847 Region Number Ireland National

Results 1/s

QBAR Rural 113.9 QBAR Urban 113.9

Q100 years 209.6

Q1 year 96.8
Q2 years 109.3
Q5 years 136.7
Q10 years 153.8
Q20 years 171.0
Q25 years 176.5
Q30 years 181.0
Q50 years 193.6
Q100 years 209.6
Q200 years 226.6
Q250 years n/a

WARNING: Irish growth curves are not defined above 200 years.

n/a

Q1000 years

Drained Area = 2.49 ha

50ha = 113.9 l/s

Qbar = (113.9/50)x2.49

Qbar = 5.7l/s

Unit C2, Nutgrove Office Park, Rathfarnham, Dublin 14, D14CR20 T. 01 2051101 E. info@poga.ie W. poga.ie

7.5 APPENDIX E- PAVED AREA FACTORS EXISTING & PROPOSED

Project : POGA Ref: St Patrick's Park

1668

Title: **Paved Area Factors** Date:

Oct-22

Element

	ng

!

Proposed

Existing Roofs (m²)	2058	
Proposed Roofs (m²)	655	
Existing Roads (m ²)	2707	
Proposed Roads (m²)	1411	
Hardstanding (m²)	1540	
Roads/Parking SuDS (m²)	2398	
Grass (m²)	14109	
Proposed Drained Area (m²)	24878	m²

Paved Area Factors (PIMP Factors)

Roofs	=	0.95
Roads	=	0.85
Hardstanding	=	0.85
Roads/Parking SuDS	=	0.40
Grass	=	0.05

PIMP factor for Catchment

Element

Roofs	10.4%	
Roads	14.1%	
Hardstanding	5.3%	
Roads/Parking SuDS	3.9%	
Grass	2.8%	
Average PIMP Factor Per site	<u>36%</u>	
Total Proposed Impermeable Area	<u>8956</u>	m²
	<u>0.90</u>	На

Greenfield Outflow

Interpolated from 50ha Qbar = {(113.9/50)x2.49}

Qbar allowed outlow for Total Area (I/s) <u>5.7</u> l/s

7.6 APPENDIX F – EXISTING ATTENUATION CAPACITY CHECK **1,30,100 YEAR STORMS** +20% CLIMATE CHANGE

Pat O'Gorman & Associates	Page 1	
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 1 Year Attenuation	Mirro
Date 19/10/2022 12:13	Designed by NM	Desinado
File Attenuation 1 in 1 Year	Checked by PM	Diamage
Innovyze	Source Control 2019.1	'

Summary of Results for 1 year Return Period (+20%)

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	77.990	0.204	4.7	44.8	ОК
30	min	Summer	78.057	0.271	4.9	59.6	O K
60	min	Summer	78.126	0.340	5.0	74.9	O K
120	min	Summer	78.188	0.402	5.0	88.4	O K
180	min	Summer	78.216	0.430	5.0	94.5	O K
240	min	Summer	78.233	0.447	5.0	98.3	O K
360	min	Summer	78.251	0.465	5.0	102.2	O K
480	min	Summer	78.257	0.471	5.0	103.7	O K
600	min	Summer	78.257	0.471	5.0	103.7	O K
720	min	Summer	78.254	0.468	5.0	103.0	O K
960	min	Summer	78.240	0.454	5.0	99.9	O K
1440	min	Summer	78.198	0.412	5.0	90.7	O K
2160	min	Summer	78.133	0.347	5.0	76.4	O K
2880	min	Summer	78.076	0.290	4.9	63.7	O K
4320	min	Summer	77.991	0.205	4.7	45.1	O K
5760	min	Summer	77.936	0.150	4.4	33.1	O K
7200	min	Summer	77.902	0.116	4.1	25.5	O K
8640	min	Summer	77.883	0.097	3.9	21.3	O K
10080	min	Summer	77.872	0.086	3.6	18.8	O K
15	min	Winter	78.016	0.230	4.8	50.5	O K
30	min	Winter	78.093	0.307	5.0	67.4	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	28.887	0.0	48.4	22
		Summer	19.778	0.0	66.3	36
		Summer	13.113	0.0	87.9	64
		Summer	8.546	0.0	114.6	120
				0.0		
		Summer	6.626		133.3	158
		Summer	5.527	0.0	148.3	192
		Summer	4.279	0.0	172.2	260
480	min	Summer	3.568	0.0	191.5	330
600	min	Summer	3.100	0.0	208.0	402
720	min	Summer	2.764	0.0	222.5	470
960	min	Summer	2.303	0.0	247.2	610
1440	min	Summer	1.773	0.0	285.5	872
2160	min	Summer	1.365	0.0	329.7	1256
2880	min	Summer	1.133	0.0	365.1	1620
4320	min	Summer	0.873	0.0	421.8	2336
5760	min	Summer	0.726	0.0	467.4	3048
7200	min	Summer	0.627	0.0	505.2	3744
8640	min	Summer	0.557	0.0	538.2	4408
10080	min	Summer	0.504	0.0	567.9	5144
15	min	Winter	28.887	0.0	54.2	21
30	min	Winter	19.778	0.0	74.2	35

©1982-2019 Innovyze

Pat O'Gorman & Associates		Page 2
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 1 Year Attenuation	Mirro
Date 19/10/2022 12:13	Designed by NM	Drainage
File Attenuation 1 in 1 Year	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Summary of Results for 1 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	78.173	0.387	5.0	85.2	ОК
120	min	Winter	78.249	0.463	5.0	101.8	O K
180	min	Winter	78.284	0.498	5.0	109.5	O K
240	min	Winter	78.301	0.515	5.0	113.2	O K
360	min	Winter	78.319	0.533	5.0	117.2	O K
480	min	Winter	78.322	0.536	5.0	117.9	O K
600	min	Winter	78.317	0.531	5.0	116.7	O K
720	min	Winter	78.306	0.520	5.0	114.4	O K
960	min	Winter	78.275	0.489	5.0	107.6	O K
1440	min	Winter	78.198	0.412	5.0	90.7	O K
2160	min	Winter	78.092	0.306	5.0	67.4	O K
2880	min	Winter	78.011	0.225	4.8	49.6	O K
4320	min	Winter	77.915	0.129	4.3	28.5	O K
5760	min	Winter	77.877	0.091	3.8	20.1	O K
7200	min	Winter	77.862	0.076	3.3	16.6	O K
8640	min	Winter	77.851	0.065	2.9	14.3	O K
10080	min	Winter	77.844	0.058	2.7	12.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
	min Winte		0.0	98.5	64
120	min Winte	r 8.546	0.0	128.4	120
180	min Winte	r 6.626	0.0	149.3	174
240	min Winte	r 5.527	0.0	166.1	224
360	min Winte	r 4.279	0.0	192.9	282
480	min Winte	r 3.568	0.0	214.5	360
600	min Winte	r 3.100	0.0	233.0	438
720	min Winte	r 2.764	0.0	249.2	514
960	min Winte	r 2.303	0.0	276.9	660
1440	min Winte	r 1.773	0.0	319.8	940
2160	min Winte	r 1.365	0.0	369.2	1320
2880	min Winte	r 1.133	0.0	408.9	1676
4320	min Winte	r 0.873	0.0	472.4	2340
5760	min Winte	r 0.726	0.0	523.6	3000
7200	min Winte	r 0.627	0.0	565.8	3680
8640	min Winte	r 0.557	0.0	602.8	4408
10080	min Winte	r 0.504	0.0	636.1	5136

Pat O'Gorman & Associates		Page 3
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 1 Year Attenuation	Micco
Date 19/10/2022 12:13	Designed by NM	Desinado
File Attenuation 1 in 1 Year	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Rainfall Details

Return Period (years) 50.750
Return Period (years) 50.750
Region Scotland and Ireland 50.750
M5-60 (mm) 15.800 Shortest Storm (mins) 15
Ratio R 0.280 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +20

Time Area Diagram

Total Area (ha) 0.895

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.295	4	8	0.600

Pat O'Gorman & Associates		Page 4
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 1 Year Attenuation	Mirro
Date 19/10/2022 12:13	Designed by NM	Designado
File Attenuation 1 in 1 Year	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 81.011

Tank or Pond Structure

Invert Level (m) 77.786

Depth (m)	Area (m²)						
0.000	220.0	0.700	220.0	1.400	220.0	2.100	220.0
0.100	220.0	0.800	220.0	1.500	220.0	2.200	220.0
0.200	220.0	0.900	220.0	1.600	220.0	2.300	220.0
0.300	220.0	1.000	220.0	1.700	220.0	2.400	220.0
0.400	220.0	1.100	220.0	1.800	220.0	2.500	220.0
0.500	220.0	1.200	220.0	1.900	220.0		
0.600	220.0	1.300	220.0	2.000	220.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0099-5700-1900-5700 Design Head (m) 1.900 Design Flow (1/s) ${\tt Flush-Flo^{\scriptsize{\texttt{M}}}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 99 Invert Level (m) 77.761 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.900 5.7 Flush-Flo™ 0.431 5.0 Kick-Flo® 0.886 4.0 Mean Flow over Head Range 4.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1,	/s) Depth (m)	Flow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.3 1.200	4.6	3.000	7.1	7.000	10.5
0.200	4.6 1.400	4.9	3.500	7.6	7.500	10.9
0.300	4.9 1.600	5.3	4.000	8.1	8.000	11.2
0.400	5.0 1.800	5.6	4.500	8.5	8.500	11.6
0.500	5.0 2.000	5.8	5.000	9.0	9.000	11.9
0.600	4.9 2.200	6.1	5.500	9.4	9.500	12.2
0.800	4.5 2.400	6.4	6.000	9.8		
1.000	4.2 2.600	6.6	6.500	10.2		

©1982-2019 Innovyze

Pat O'Gorman & Associates		Page 1
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 30 Year Attenuation	Mirro
Date 19/10/2022 12:12	Designed by NM	Desipago
File Attenuation 1 in 100 Ye	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	78.254	0.468	5.0	103.0	ОК
30	min	Summer	78.421	0.635	5.0	139.7	O K
60	min	Summer	78.595	0.809	5.0	178.1	ОК
120	min	Summer	78.773	0.987	5.0	217.1	ОК
180	min	Summer	78.866	1.080	5.0	237.6	ОК
240	min	Summer	78.923	1.137	5.0	250.1	O K
360	min	Summer	78.980	1.194	5.0	262.8	O K
480	min	Summer	78.999	1.213	5.0	266.9	ОК
600	min	Summer	79.007	1.221	5.0	268.6	O K
720	min	Summer	79.008	1.222	5.0	268.9	ОК
960	min	Summer	79.002	1.216	5.0	267.5	ОК
1440	min	Summer	78.971	1.185	5.0	260.7	ОК
2160	min	Summer	78.904	1.118	5.0	245.9	ОК
2880	min	Summer	78.825	1.039	5.0	228.5	ОК
4320	min	Summer	78.631	0.845	5.0	185.8	ОК
5760	min	Summer	78.420	0.634	5.0	139.4	ОК
7200	min	Summer	78.268	0.482	5.0	106.1	ОК
8640	min	Summer	78.157	0.371	5.0	81.6	O K
10080	min	Summer	78.076	0.290	4.9	63.8	O K
15	min	Winter	78.313	0.527	5.0	115.9	O K
30	min	Winter	78.502	0.716	5.0	157.4	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	64.112	0.0	107.5	22
30	min	Summer	44.003	0.0	147.6	37
60	min	Summer	28.719	0.0	192.7	66
120	min	Summer	18.255	0.0	245.0	126
180	min	Summer	13.904	0.0	279.9	184
240	min	Summer	11.439	0.0	307.0	244
360	min	Summer	8.669	0.0	349.0	362
480	min	Summer	7.113	0.0	381.8	454
600	min	Summer	6.097	0.0	409.3	510
720	min	Summer	5.375	0.0	432.9	574
960	min	Summer	4.404	0.0	472.9	706
1440	min	Summer	3.324	0.0	535.5	984
2160	min	Summer	2.508	0.0	606.1	1408
2880	min	Summer	2.053	0.0	661.4	1820
4320	min	Summer	1.546	0.0	747.3	2640
5760	min	Summer	1.264	0.0	814.6	3336
7200	min	Summer	1.081	0.0	870.6	4032
8640	min	Summer	0.951	0.0	919.2	4672
10080	min	Summer	0.854	0.0	962.5	5352
15	min	Winter	64.112	0.0	120.4	22
30	min	Winter	44.003	0.0	165.3	37

©1982-2019 Innovyze

Pat O'Gorman & Associates		Page 2
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 30 Year Attenuation	Mirro
Date 19/10/2022 12:12	Designed by NM	Designado
File Attenuation 1 in 100 Ye	Checked by PM	Diali larje
Innovyze	Source Control 2019.1	

Summary of Results for 30 year Return Period (+20%)

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	78.702	0.916	5.0	201.6	ОК
120	min	Winter	78.904	1.118	5.0	246.0	O K
180	min	Winter	79.015	1.229	5.0	270.4	O K
240	min	Winter	79.086	1.300	5.0	285.9	O K
360	min	Winter	79.164	1.378	5.0	303.1	O K
480	min	Winter	79.197	1.411	5.0	310.3	O K
600	min	Winter	79.205	1.419	5.0	312.3	O K
720	min	Winter	79.201	1.415	5.0	311.3	O K
960	min	Winter	79.191	1.405	5.0	309.1	O K
1440	min	Winter	79.135	1.349	5.0	296.9	O K
2160	min	Winter	79.018	1.232	5.0	271.0	O K
2880	min	Winter	78.884	1.098	5.0	241.5	O K
4320	min	Winter	78.535	0.749	5.0	164.7	O K
5760	min	Winter	78.250	0.464	5.0	102.1	O K
7200	min	Winter	78.080	0.294	4.9	64.6	O K
8640	min	Winter	77.983	0.197	4.7	43.2	ОК
10080	min	Winter	77.926	0.140	4.3	30.7	O K

Storm			Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	28.719	0.0	215.8	66
120	min	Winter	18.255	0.0	274.5	124
180	min	Winter	13.904	0.0	313.6	182
240	min	Winter	11.439	0.0	344.0	238
360	min	Winter	8.669	0.0	391.0	352
480	min	Winter	7.113	0.0	427.8	462
600	min	Winter	6.097	0.0	458.4	564
720	min	Winter	5.375	0.0	484.9	608
960	min	Winter	4.404	0.0	529.7	746
1440	min	Winter	3.324	0.0	599.7	1058
2160	min	Winter	2.508	0.0	678.8	1520
2880	min	Winter	2.053	0.0	740.8	1968
4320	min	Winter	1.546	0.0	837.1	2772
5760	min	Winter	1.264	0.0	912.4	3408
7200	min	Winter	1.081	0.0	975.3	4040
8640	min	Winter	0.951	0.0	1029.6	4672
10080	min	Winter	0.854	0.0	1078.0	5344

Pat O'Gorman & Associates		Page 3
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 30 Year Attenuation	Mirro
Date 19/10/2022 12:12	Designed by NM	Desinado
File Attenuation 1 in 100 Ye	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region Scotland and Ireland Cv (Winter) 15.800 Shortest Storm (mins) 15
Ratio R 0.280 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +20

Time Area Diagram

Total Area (ha) 0.895

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.295	4	8	0.600

Pat O'Gorman & Associates		Page 4
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 30 Year Attenuation	Mirro
Date 19/10/2022 12:12	Designed by NM	Designado
File Attenuation 1 in 100 Ye	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 81.011

Tank or Pond Structure

Invert Level (m) 77.786

Depth (m)	Area (m²)						
0.000	220.0	0.700	220.0	1.400	220.0	2.100	220.0
0.100	220.0	0.800	220.0	1.500	220.0	2.200	220.0
0.200	220.0	0.900	220.0	1.600	220.0	2.300	220.0
0.300	220.0	1.000	220.0	1.700	220.0	2.400	220.0
0.400	220.0	1.100	220.0	1.800	220.0	2.500	220.0
0.500	220.0	1.200	220.0	1.900	220.0		
0.600	220.0	1.300	220.0	2.000	220.0		

Hydro-Brake® Optimum Outflow Control

Unit Reference MD-SHE-0099-5700-1900-5700 Design Head (m) 1.900 Design Flow (1/s) ${\tt Flush-Flo^{\scriptsize{\texttt{M}}}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 99 Invert Level (m) 77.761 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.900 5.7 Flush-Flo™ 0.431 5.0 Kick-Flo® 0.886 4.0 Mean Flow over Head Range 4.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow	(l/s)	Depth (m) Flo	ow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	3.3	1.200	4.6	3.000	7.1	7.000	10.5
0.200	4.6	1.400	4.9	3.500	7.6	7.500	10.9
0.300	4.9	1.600	5.3	4.000	8.1	8.000	11.2
0.400	5.0	1.800	5.6	4.500	8.5	8.500	11.6
0.500	5.0	2.000	5.8	5.000	9.0	9.000	11.9
0.600	4.9	2.200	6.1	5.500	9.4	9.500	12.2
0.800	4.5	2.400	6.4	6.000	9.8		
1.000	4.2	2.600	6.6	6.500	10.2		

©1982-2019 Innovyze

	Page 1			
	Unit C2, Nutgrove Office Par	1668 St Patrick's Park		
	Republic of Ireland	Rathangan		
	D14 CR20	1 in 100 Year Attenuation	Micro	
	Date 19/10/2022 12:14	Designed by NM	Designado	
	File Attenuation 1 in 100 Ye	Checked by PM	Dialilade	
	Innovyze	Source Control 2019.1	•	

Summary of Results for 100 year Return Period (+20%)

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	78.398	0.612	5.0	134.6	ОК
30	min	Summer	78.626	0.840	5.0	184.8	ОК
60	min	Summer	78.858	1.072	5.0	235.9	ОК
120	min	Summer	79.086	1.300	5.0	286.1	O K
180	min	Summer	79.209	1.423	5.0	313.1	O K
240	min	Summer	79.286	1.500	5.1	330.0	ОК
360	min	Summer	79.368	1.582	5.3	348.1	ОК
480	min	Summer	79.400	1.614	5.3	355.1	O K
600	min	Summer	79.408	1.622	5.3	356.9	ОК
720	min	Summer	79.411	1.625	5.3	357.5	ОК
960	min	Summer	79.403	1.617	5.3	355.8	ОК
1440	min	Summer	79.367	1.581	5.3	347.9	ОК
2160	min	Summer	79.295	1.509	5.2	332.0	ОК
2880	min	Summer	79.213	1.427	5.0	313.9	ОК
4320	min	Summer	79.038	1.252	5.0	275.5	ОК
5760	min	Summer	78.865	1.079	5.0	237.3	ОК
7200	min	Summer	78.676	0.890	5.0	195.7	ОК
8640	min	Summer	78.444	0.658	5.0	144.8	ОК
10080	min	Summer	78.297	0.511	5.0	112.4	O K
15	min	Winter	78.474	0.688	5.0	151.3	O K
30	min	Winter	78.732	0.946	5.0	208.1	O K

Storm Event			Rain (mm/hr)		Discharge Volume	Time-Peak (mins)
	n v em	C	(11111/1111/	(m ³)	(m³)	(mills)
				(1111-)	(111-)	
15	min	Summer	83.028	0.0	139.2	22
30	min	Summer	57.412	0.0	192.6	37
60	min	Summer	37.358	0.0	250.8	66
120	min	Summer	23.565	0.0	316.4	126
180	min	Summer	17.847	0.0	359.4	186
240	min	Summer	14.619	0.0	392.5	244
360	min	Summer	11.005	0.0	443.2	362
480	min	Summer	8.985	0.0	482.5	480
600	min	Summer	7.672	0.0	515.0	540
720	min	Summer	6.741	0.0	543.0	602
960	min	Summer	5.494	0.0	590.0	730
1440	min	Summer	4.116	0.0	663.0	1000
2160	min	Summer	3.083	0.0	744.9	1428
2880	min	Summer	2.509	0.0	808.4	1844
4320	min	Summer	1.875	0.0	906.0	2676
5760	min	Summer	1.523	0.0	981.4	3464
7200	min	Summer	1.296	0.0	1043.7	4320
8640	min	Summer	1.136	0.0	1097.6	4920
10080	min	Summer	1.015	0.0	1144.9	5544
15	min	Winter	83.028	0.0	155.9	22
30	min	Winter	57.412	0.0	215.7	37

©1982-2019 Innovyze

Pat O'Gorman & Associates		Page 2	
Unit C2, Nutgrove Office Par	1668 St Patrick's Park		
Republic of Ireland	Rathangan		
D14 CR20	1 in 100 Year Attenuation	Mirro	
Date 19/10/2022 12:14	Designed by NM	Desinado	
File Attenuation 1 in 100 Ye	Checked by PM	Diamage	
Innovyze	Source Control 2019.1		

Summary of Results for 100 year Return Period (+20%)

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
60	min	Winter	78.994	1.208	5.0	265.8	ОК
120	min	Winter	79.257	1.471	5.1	323.6	O K
180	min	Winter	79.403	1.617	5.3	355.7	O K
240	min	Winter	79.497	1.711	5.5	376.4	O K
360	min	Winter	79.605	1.819	5.6	400.2	O K
480	min	Winter	79.657	1.871	5.7	411.5	O K
600	min	Winter	79.676	1.890	5.7	415.8	O K
720	min	Winter	79.677	1.891	5.7	416.0	O K
960	min	Winter	79.662	1.876	5.7	412.8	O K
1440	min	Winter	79.607	1.821	5.6	400.6	O K
2160	min	Winter	79.484	1.698	5.4	373.7	O K
2880	min	Winter	79.347	1.561	5.2	343.4	O K
4320	min	Winter	79.067	1.281	5.0	281.8	O K
5760	min	Winter	78.781	0.995	5.0	218.9	O K
7200	min	Winter	78.397	0.611	5.0	134.5	O K
8640	min	Winter	78.177	0.391	5.0	86.0	O K
10080	min	Winter	78.048	0.262	4.9	57.7	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	280.8	66
120	min	Winter	23.565	0.0	354.3	124
180	min	Winter	17.847	0.0	402.5	182
240	min	Winter	14.619	0.0	439.6	240
360	min	Winter	11.005	0.0	496.4	354
480	min	Winter	8.985	0.0	540.4	464
600	min	Winter	7.672	0.0	576.8	572
720	min	Winter	6.741	0.0	608.1	674
960	min	Winter	5.494	0.0	660.8	764
1440	min	Winter	4.116	0.0	742.4	1074
2160	min	Winter	3.083	0.0	834.3	1540
2880	min	Winter	2.509	0.0	905.4	1992
4320	min	Winter	1.875	0.0	1014.7	2860
5760	min	Winter	1.523	0.0	1099.2	3744
7200	min	Winter	1.296	0.0	1169.1	4328
8640	min	Winter	1.136	0.0	1229.3	4928
10080	min	Winter	1.015	0.0	1282.5	5544

Pat O'Gorman & Associates	Page 3	
Unit C2, Nutgrove Office Par		
Republic of Ireland	Rathangan	
D14 CR20	1 in 100 Year Attenuation	Mirro
Date 19/10/2022 12:14	Designed by NM	Desinado
File Attenuation 1 in 100 Ye	Checked by PM	Diali larje
Innovyze	Source Control 2019.1	

Rainfall Details

Rainfall Model		FSR	Winter Storms	Yes
Return Period (years)		100	Cv (Summer)	0.750
Region	Scotland and	${\tt Ireland}$	Cv (Winter)	0.840
M5-60 (mm)		15.800	Shortest Storm (mins)	15
Ratio R		0.280	Longest Storm (mins)	10080
Summer Storms		Yes	Climate Change %	+20

Time Area Diagram

Total Area (ha) 0.895

	(mins)				
From:	To:	(ha)	From:	To:	(ha)
0	4	0.295	4	8	0.600

Pat O'Gorman & Associates	Page 4	
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Rathangan	
D14 CR20	1 in 100 Year Attenuation	Mirro
Date 19/10/2022 12:14	Designed by NM	Designado
File Attenuation 1 in 100 Ye	Checked by PM	Dialilade
Innovyze	Source Control 2019.1	

Model Details

Storage is Online Cover Level (m) 81.011

Tank or Pond Structure

Invert Level (m) 77.786

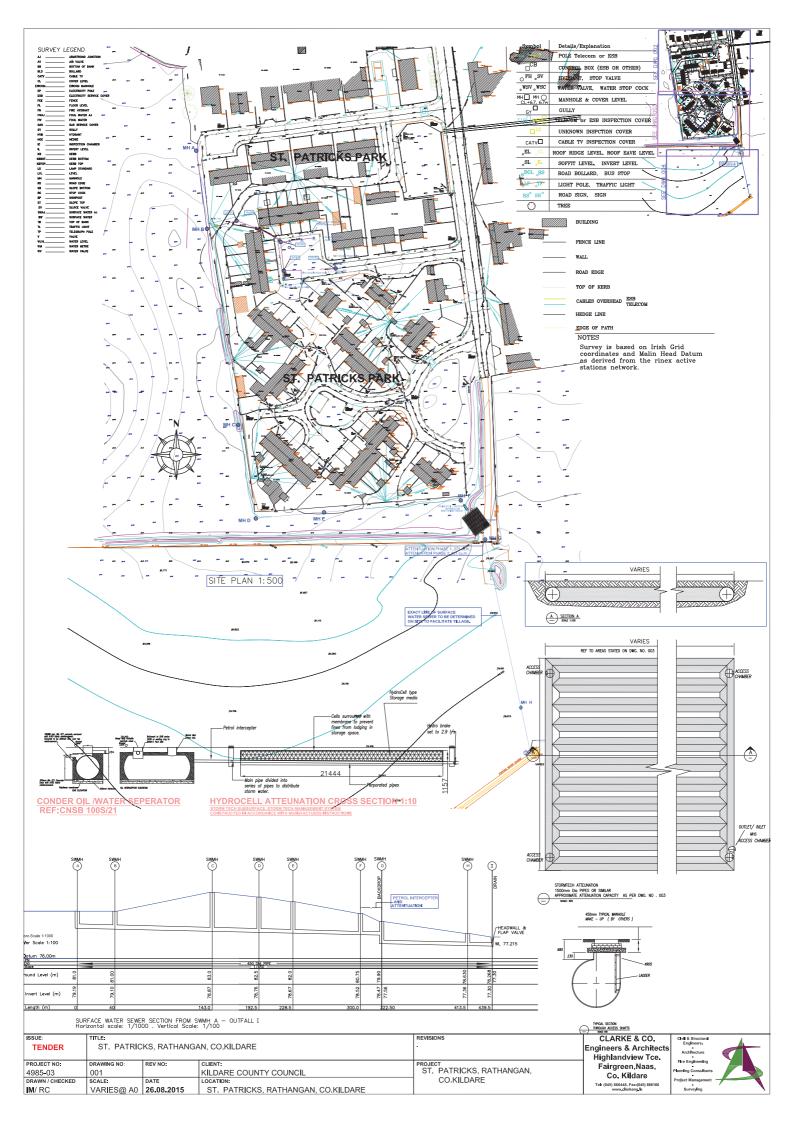
Depth (m)	Area (m²)						
0.000	220.0	0.700	220.0	1.400	220.0	2.100	220.0
0.100	220.0	0.800	220.0	1.500	220.0	2.200	220.0
0.200	220.0	0.900	220.0	1.600	220.0	2.300	220.0
0.300	220.0	1.000	220.0	1.700	220.0	2.400	220.0
0.400	220.0	1.100	220.0	1.800	220.0	2.500	220.0
0.500	220.0	1.200	220.0	1.900	220.0		
0.600	220.0	1.300	220.0	2.000	220.0		

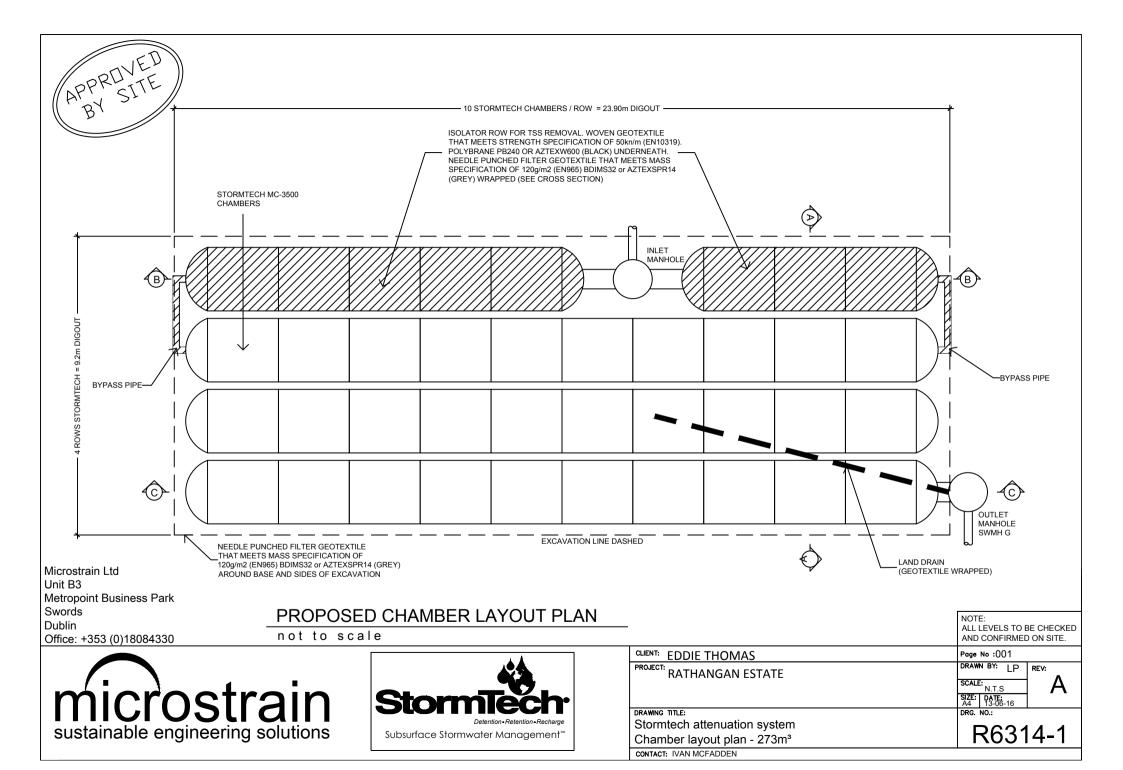
Hydro-Brake® Optimum Outflow Control

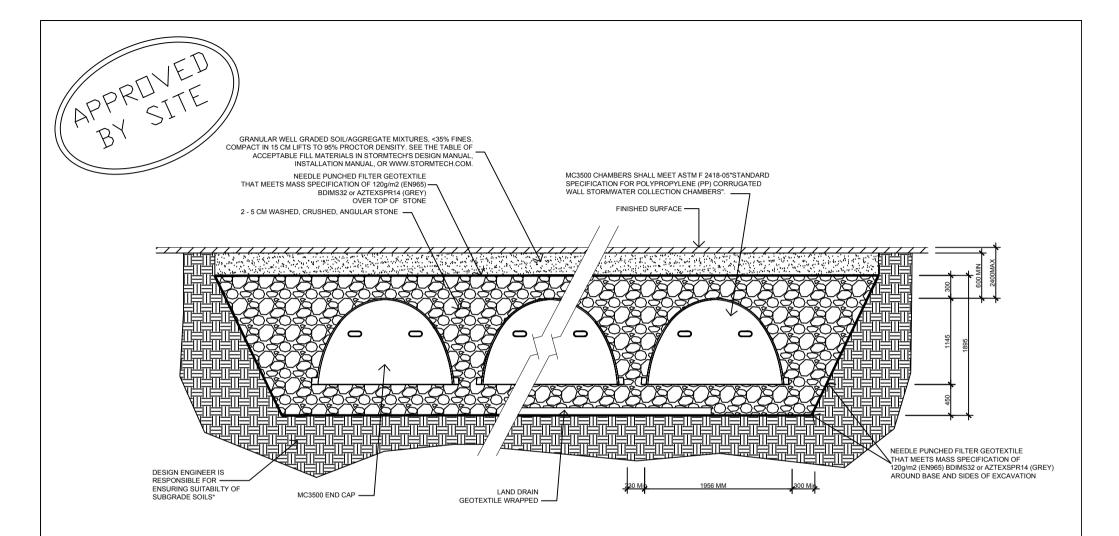
Unit Reference MD-SHE-0099-5700-1900-5700 Design Head (m) 1.900 Design Flow (1/s) ${\tt Flush-Flo^{\scriptsize{\texttt{M}}}}$ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 99 Invert Level (m) 77.761 Minimum Outlet Pipe Diameter (mm) 150 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.900 5.7 Flush-Flo™ 0.431 5.0 Kick-Flo® 0.886 4.0 Mean Flow over Head Range 4.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated


Depth (m) Flow	(l/s)	Depth (m) F	flow (1/s)	Depth (m) Flow	(l/s)	Depth (m)	Flow (1/s)
0.100	3.3	1.200	4.6	3.000	7.1	7.000	10.5
0.200	4.6	1.400	4.9	3.500	7.6	7.500	10.9
0.300	4.9	1.600	5.3	4.000	8.1	8.000	11.2
0.400	5.0	1.800	5.6	4.500	8.5	8.500	11.6
0.500	5.0	2.000	5.8	5.000	9.0	9.000	11.9
0.600	4.9	2.200	6.1	5.500	9.4	9.500	12.2
0.800	4.5	2.400	6.4	6.000	9.8		
1.000	4.2	2.600	6.6	6.500	10.2		


©1982-2019 Innovyze



Unit C2, Nutgrove Office Park, Rathfarnham, Dublin 14, D14CR20 T. 01 2051101 E. info@poga.ie W. poga.ie

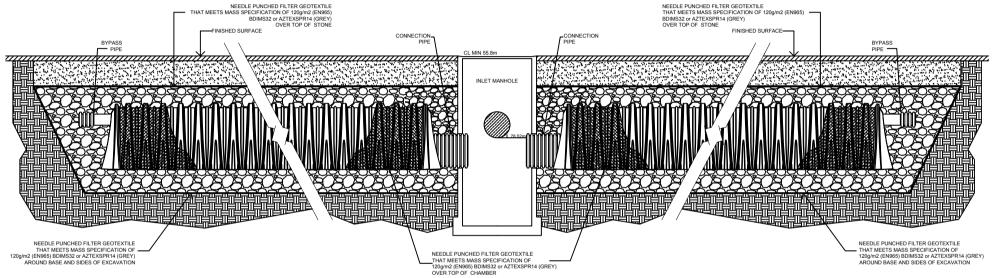
7.7 APPENDIX G — EXISTING SW & ATTENUATION DETAILS

Microstrain Ltd Unit B3 Metropoint Business Park Swords, Dublin Office: +353 (0)18084330

STORMTECH CHAMBER
CROSS SECTION DETAIL A-A

not to scale

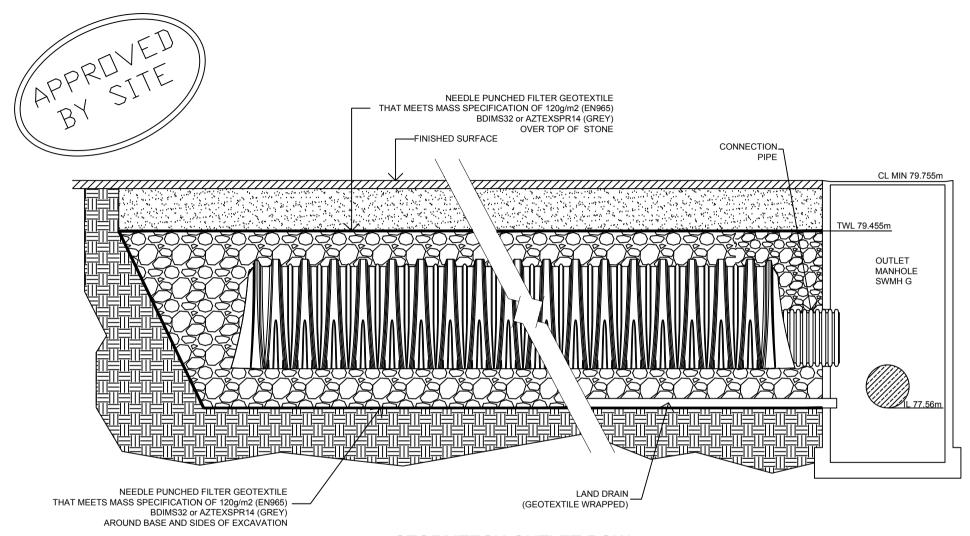
*SEE STORMTECH'S DESIGN MANUAL AND CONFIRMED ON SITE


NOTE: ALL LEVELS TO BE CHECKED AND CONFIRMED ON SITE.

CLE OF OR WITH COLOR DEGICAL WING A C	AND	CON	FIRIVIEL	ON SITE.
CLIENT: EDDIE THOMAS	Page	No.	:002	
PROJECT: RATHANGAN ESTATE	DRAW		LP	REV:
	SCALE SIZE:	N.T.		Α
DRAWING TITLE:	A4 DRG.		E:)6-16	
Stormtech attenuation system Chamber cross section detail - 273m³			631	4-1
CONTACT: IVAN MCFADDEN				

Microstrain Ltd Unit B3 Metropoint Business Park Swords, Dublin Office: +353 (0)18084330

STORMTECH ISOLATOR™ ROW CROSS SECTION DETAIL B-B


not to scale

NOTE: ALL LEVELS TO BE CHECKED AND CONFIRMED ON SITE.

				0.1.0
CLIENT: EDDIE THOMAS	,		:003	
PROJECT: RATHANGAN ESTATE	DRAW	N BY:	LP	REV:
	SCALE	N.T.S	3	Α
	SIZE: A4	DATE: 13-06	-16	<i>,</i> ,
DRAWING TITLE:	DRG.	NO.:		
Stormtech attenuation system			10.4	4.4
Isolator row detail - 273m³		Кr	5 31	4-1
Isolator fow detail - 273m				
CONTACT: IVAN MCFADDEN				

Microstrain Ltd Unit B3 Metropoint Business Park Swords, Dublin Office: +353 (0)18084330

STORMTECH OUTLET ROW CROSS SECTION DETAIL C-C

not to scale

ALL LEVELS TO BE CHECKED AND CONFIRMED ON SITE.

NOTE:

	Page	No :004	
PROJECT: RATHANGAN ESTATE	DRAW	N BY: LP	REV:
	SCALE	N.T.S	Δ
	SIZE: A4	DATE: 13-06-16	
DRAWING TITLE:	DRG.		
Stormtech attenuation system			1 4 4
Outlet row detail - 273m³		R631	14-1
Outlet Tow detail 1-275III			
CONTACT: IVAN MCFADDEN			

7.8 APPENDIX H - **PROPOSED STORMTECH ATTENUATION SIZE**

STORMTECH Stormwater Management System Design Tool

ver: Jan18

PROJECT REF:	1668
LOCATION:	St Patricks Park
DATE:	19-Oct-22
CREATED BY:	NM

SYSTEM PARAMETERS

Required Total Storage	92 r
Stormtech chamber model	SC740
Filtration Permeable Geo or Impermeable Geo	Filter geo
Number of Isolator Rows (IR)	1

SITE PARAMETERS

Stone Porosity	40%	
Excavation Batter Angle (degrees)	60 °	Minimum Requirement
Stone Above Chambers	0.2 m	0.15
Stone Below Chambers	0.25 m	0.15
In-between Row Spacing	0.15 m	0.15
Additional Storage outside Excavation. E.g manholes, Header Pipe	0 m^3	

HEADER PIPE

Is Header pipe required within excavation	No
Orientation of Header Pipe	Parrallel to IR
Diameter of Header Pipe	0.6 m
Length of Header Pipe	0 m

CHAMBER SYSTEM DIMENSIONS	Calculated	Adopted
Number of Rows		3 ea
Number of units per Row		11 ea
System Installed Storage Depth (effective storage depth)	1.210	m
Tank overall installed Width at base	4.79	5 m
Tank overall installed Length at Base	24.57	25 m
Total Effective System Storage	93.2	97.0 m ³

STORMTECH SYSTEM DETAIL

StormTech Chamber Model	SC740
Unit Width	1.295 m
Unit Length	2.17 m
Unit Height	0.76 m
Min Cover Over System	0.3 m
Max Cover Over Chamber (see StormTech for greater cover)	2.4 m
Chamber Internal Storage Vol.	1.3 m
Header Pipe Internal Storage Vol in Excavation	0.0 m

STONE AND EXCAVATION DETAIL

O TOTAL TARRED EXTORETE CONTROL DE LITTLE		
Volume of Dig for System	178	m^3
Width at base	5.00	m
Width at top	6.40	m
Length at base	25.00	m
Length at top	26.40	m
Depth Of System	1.21	m
Area of Dig at Base of System	125	m^2
Area of Dig at Top of System	169	m^2
Void Ratio	55%	
Stone Requirement - m3	134	m^3
Stone Requirement - tonne	220	tonn

7.9 APPENDIX J – SURFACE WATER PIPE DESIGN

Pat O'Gorman & Associates		Page 0
Unit C2, Nutgrove Office Par	1668 St Patricks Park	
Republic of Ireland	Rathangan	
D14 CR20	Surface Water Pipe Design	Mirro
Date 01/04/2021	Designed by NM	Designado
File Surface Water Network	Checked by PM	Dialilade
Innovyze	Network 2019.1	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Surface Network 1

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and Ireland

Return Period (years) 2 PIMP (%) 100

M5-60 (mm) 15.600 Add Flow / Climate Change (%) 20

Ratio R 0.280 Minimum Backdrop Height (m) 0.600

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.800

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Time Area Diagram for Surface Network 1

						Time (mins)	
0 - 4	0.006	4-8	0.261	8-12	0.418	12-16	0.038

Total Area Contributing (ha) = 0.724

Total Pipe Volume $(m^3) = 80.597$

Network Design Table for Surface Network 1

« - Indicates pipe capacity < flow

PN	Length	Fall	Slope	I.Area	T.E.	Base		k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
1.000	27.648	0.276	100.2	0.079	4.00		0.0	0.600	0	225	Pipe/Conduit	A
1.001	43.523	0.435	100.1	0.016	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
1.002	59.571	0.298	199.9	0.040	0.00		0.0	0.600	0	225	Pipe/Conduit	ā
1.003	55.787	0.090	619.9	0.119	0.00		0.0	0.600	0	450	Pipe/Conduit	ē
1.004	47.527	0.100	475.3	0.036	0.00		0.0	0.600	0	450	Pipe/Conduit	
1.001 1.002 1.003	43.523 59.571 55.787	0.435 0.298 0.090	100.1 199.9 619.9	0.016 0.040 0.119	0.00 0.00 0.00		0.0	0.600 0.600 0.600	0	225 225 450	Pipe/Conduit Pipe/Conduit Pipe/Conduit	

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)		Cap (1/s)		
1.000 1.001 1.002 1.003 1.004	49.75 47.66 44.16 41.07 39.09	4.91 5.99 7.13	80.458 80.181 79.713 79.190 79.100	0.079 0.095 0.135 0.254 0.290	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.5 3.2 5.7	1.31 0.92 0.81	51.9 52.0 36.6 128.7 147.3	14.7 19.4	

©1982-2019 Innovyze

Pat O'Gorman & Associates	Page 1	
Unit C2, Nutgrove Office Par	1668 St Patricks Park	
Republic of Ireland	Rathangan	
D14 CR20	Surface Water Pipe Design	Micro
Date 01/04/2021	Designed by NM	Drainage
File Surface Water Network	Checked by PM	Diali larje
Innovyze	Network 2019.1	

Network Design Table for Surface Network 1

PN	Length (m)	Fall	Slope (1:X)	I.Area	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.005	44.204	0.130	340.0	0.042	0.00	0.0	0.600	0	450	Pipe/Conduit	
2.000	16.095 18.049	0.089		0.038	4.00	0.0	0.600	0	225 225	Pipe/Conduit Pipe/Conduit	<u> </u>
		0.092	180.5	0.018	0.00	0.0	0.600	0	225	Pipe/Conduit Pipe/Conduit	0 0
	18.272			0.002	0.00		0.600	0		Pipe/Conduit	8
3.000	15.800 20.142	0.079		0.054	4.00		0.600	0	225 225	Pipe/Conduit Pipe/Conduit	0
3.002	26.312 19.032	0.132		0.038	0.00	0.0	0.600	0		Pipe/Conduit Pipe/Conduit	ě
2.005	7.640	0.042	181.9	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	•
2.006	28.741			0.007	0.00	0.0	0.600	0	300	Pipe/Conduit	<u> </u>
1.006	52.793	0.110	449.1	0.050	0.00	0.0	0.600	0	450	Pipe/Conduit Pipe/Conduit	.
1.008 1.009 1.010	82.561 5.969 3.488	0.183 0.030 0.017		0.031 0.000 0.000	0.00	0.0 0.0 0.0	0.600	0	150	Pipe/Conduit Pipe/Conduit Pipe/Conduit	<u> </u>
1.010	6.580	0.017		0.000	0.00	0.0		0		Pipe/Conduit	6

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)			Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
1.005	37.70	8.66	79.000	0.332	0.332 0.0		6.8	1.10	174.4	40.7	
2.000 2.001 2.002 2.003 2.004	50.00 48.84 47.79 46.26 45.25	4.59 4.87 5.32	80.653 80.563 80.463 80.371 80.227	0.038 0.0 0.052 0.0 0.070 0.0 0.132 0.0 0.149 0.0		0.0 0.0 0.0 0.0	1.0 1.4 1.8 3.3	0.97 0.97 0.97 0.97	38.5 38.6 38.6 38.6 38.7	6.2 8.3 10.9 19.8 21.9	
3.000 3.001 3.002 3.003	50.00 48.60 46.90 45.75	4.29 4.65 5.13	81.174 81.095 80.995 80.863	0.054 0.082 0.120 0.141	0.0 0.0 0.0 0.0	0.0 0.0 0.0	1.5 2.2 3.0 3.5	0.92 0.92 0.92 0.92	36.6 36.7 36.7 36.6	8.8 13.0 18.3 21.0	
2.005 2.006	44.91 43.69		80.125 80.083	0.290 0.297	0.0	0.0	7.1 7.1	1.16 1.17	82.2 82.7	42.3 42.3	
1.006 1.007 1.008 1.009 1.010	35.91 34.91 32.72 32.53 32.42 32.21	10.21 11.65 11.79 11.88	78.870 78.760 78.685 78.502 78.472 78.454	0.679 0.693 0.724 0.724 0.724	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	13.2 13.2 13.2 13.2 13.2	0.95 0.95 0.71 0.71	146.5 151.5 151.2 12.5« 12.5« 12.5«	79.2 79.2 79.2 79.2 79.2 79.2	
				©1982-2	2019 Innov	yze					

Pat O'Gorman & Associates	Page 2	
Unit C2, Nutgrove Office Par	1668 St Patricks Park	
Republic of Ireland	Rathangan	
D14 CR20	Surface Water Pipe Design	Micco
Date 01/04/2021	Designed by NM	Designado
File Surface Water Network	Checked by PM	Diali lade
Innovyze	Network 2019.1	

Network Design Table for Surface Network 1

PN	Length	Fall	Slope	I.Area	T.E.	r.E. Base		k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.012	5.204	0.026	200.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	8
1.013	94.939	0.345	275.2	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	ā

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s) (1/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.012	32.04	12.15	78.421	0.724	0.	0.0	13.2	0.71	12.5«	79.2
1.013	30.43	13.45	77.560	0.724	0.	0.0	13.2	1.22	194.1	79.2

7.10 APPENDIX K – WASTEWATER PIPE DESIGN

Pat O'Gorman & Associates	Page 0	
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Wastewater Network	
D14 CR20		Mirro
Date 01/02/2021	Designed by NM	Desinado
File Wastewater Network - R0	Checked by	Diali lade
Innovyze	Network 2019.1	

FOUL SEWERAGE DESIGN

Design Criteria for Foul Network 1

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.200
Flow Per Person (1/per/day)	222.00	Maximum Backdrop Height (m)	1.500
Persons per House	3.00	Min Design Depth for Optimisation (m)	1.200
Domestic (1/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Foul Network 1

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	32.321	0.200	161.6	0.000	0	0.0	1.500	0	225	Pipe/Conduit	8
1.001	32.595	0.260	125.4	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
2.000	18.177	0.120	151.5	0.000	0	0.0	1.500	0	225	Pipe/Conduit	<u> </u>
2.001	13.804	0.080	172.5	0.000	0		1.500	0		Pipe/Conduit	ă
2.002	6.957	0.035	198.8	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ĕ
1.002	10.708	0.050	214.2	0.000	17	0.0	1.500	0	225	Pipe/Conduit	8
1.003	9.945	0.070	142.1	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ă
1.004	9.787	0.040	244.7	0.000	8	0.0	1.500	0	225	Pipe/Conduit	- -
1.005	30.119	0.155	194.3	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ā
1.006	20.218	0.137	147.6	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
3.000	12.509	0.108	115.8	0.000	0	0.0	1.500	0	150	Pipe/Conduit	<u> </u>

PN	US/IL	Σ Area	ΣΕ	Σ Base		e Ad	d Flow	P.Dep	P.Vel	Vel	Cap	Flow	
	(m)	(ha)	Flow	(1/s)			(1/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)	
1.000	81.800	0.000		0.0		0	0.0	0	0.00	0.90	35.9	0.0	
1.001	81.600	0.000		0.0		0	0.0	0	0.00	1.02	40.7	0.0	
2.000	81.575	0.000		0.0		0	0.0	0	0.00	0.93	37.0	0.0	
2.001	81.455	0.000		0.0		0	0.0	0	0.00	0.87	34.7	0.0	
2.002	81.375	0.000		0.0		0	0.0	0	0.00	0.81	32.3	0.0	
1.002	81.340	0.000		0.0	1	7	0.0	25	0.33	0.78	31.1	0.8	
1.003	81.290	0.000		0.0	1	7	0.0	23	0.38	0.96	38.3	0.8	
1.004	81.220	0.000		0.0	2	5	0.0	31	0.35	0.73	29.1	1.2	
1.005	81.180	0.000		0.0	2	5	0.0	29	0.38	0.82	32.7	1.2	
1.006	81.025	0.000		0.0	2	5	0.0	27	0.42	0.94	37.5	1.2	
3.000	81.358	0.000		0.0		0	0.0	0	0.00	0.81	14.4	0.0	
				©198	32-2	019	Innov	vze					

Pat O'Gorman & Associates		Page 1
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Wastewater Network	
D14 CR20		Micro
Date 01/02/2021	Designed by NM	Desinado
File Wastewater Network - R0	Checked by	Diali larje
Innovyze	Network 2019.1	

Network Design Table for Foul Network 1

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.001	17.290	0.144	119.8	0.000	0	0.0	1.500	0	150	Pipe/Conduit	8
3.002	16.258	0.108	150.5	0.000	9	0.0	1.500	0	150	Pipe/Conduit	ă
3.003	5.151	0.034	150.0	0.000	0	0.0	1.500	0		Pipe/Conduit	ŏ
1.007	8.027	0.138	58.2	0.000	0	0.0	1.500	0	225	Pipe/Conduit	õ
4.000	37.406	0.468	79.9	0.000	1	0.0	1.500	0	150	Pipe/Conduit	0
1.008	26.157	0.200	130.8	0.000	6	0.0	1.500	0	225	Pipe/Conduit	a
1.009	18.847	0.112	167.9	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ē
1.010	13.103	0.088	149.3	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ă
1.011	34.290	0.750	45.7	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ă
5.000	13.768	0.615	22.4	0.000	12	0.0	1.500	0	150	Pipe/Conduit	•
1.012	4.894	0.019	262.6	0.000	0	0.0	1.500	0	225	Pipe/Conduit	•
6.000	24.688	0.309	79.9	0.000	2	0.0	1.500	0	150	Pipe/Conduit	8
6.001	43.586	0.545	80.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ĕ
1.013	23.039	0.111	206.9	0.000	0	0.0	1.500	0	225	Pipe/Conduit	a
1.014	12.452	0.070	177.9	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ā

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Hse	Add Flow (1/s)	-			Cap (1/s)	Flow (1/s)
3.001	81.250	0.000	0.0	0	0.0	0	0.00	0.80	14.1	0.0
3.002	81.106	0.000	0.0	9	0.0	19	0.32	0.71	12.6	0.4
3.003	80.997	0.000	0.0	9	0.0	19	0.32	0.71	12.6	0.4
1.007	80.888	0.000	0.0	34	0.0	25	0.64	1.51	59.9	1.6
4.000	82.224	0.000	0.0	1	0.0	6	0.19	0.98	17.3	0.0
1.008	80.750	0.000	0.0	41	0.0	34	0.51	1.00	39.9	1.9
1.009	80.550	0.000	0.0	41	0.0	36	0.47	0.88	35.2	1.9
1.010	80.438	0.000	0.0	41	0.0	35	0.49	0.94	37.3	1.9
1.011	80.350	0.000	0.0	41	0.0	26	0.74	1.70	67.6	1.9
5.000	80.290	0.000	0.0	12	0.0	14	0.68	1.86	32.8	0.6
1.012	79.600	0.000	0.0	53	0.0	45	0.43	0.71	28.1	2.5
6.000	80.510	0.000	0.0	2	0.0	8	0.24	0.98	17.3	0.1
6.001	80.201	0.000	0.0	2	0.0	8	0.24	0.98	17.3	0.1
1.013	79.581	0.000	0.0	55	0.0	43	0.48	0.80	31.7	2.5
1.014	79.470	0.000	0.0	55	0.0	42	0.50	0.86	34.2	2.5

©1982-2019 Innovyze

Pat O'Gorman & Associates		Page 2
Unit C2, Nutgrove Office Par	1668 St Patrick's Park	
Republic of Ireland	Wastewater Network	
D14 CR20		Micro
Date 01/02/2021	Designed by NM	Designation
File Wastewater Network - R0	Checked by	Dialilade
Innovyze	Network 2019.1	

Network Design Table for Foul Network 1

PN	Length (m)	Fall (m)	Slope (1:X)		Houses	Ba Flow	ase (1/s)	k (mm)	HYD SECT		Section Type	Auto Design
1.015	35.423	1.700	20.8	0.000	2		0.0	1.500	0	225	Pipe/Conduit	8
	53.648 27.868				5 3			1.500 1.500			Pipe/Conduit Pipe/Conduit	_
1.016	48.110	0.550	87.5	0.000	0		0.0	1.500	0	225	Pipe/Conduit	<u> </u>

PN					Add Flow (1/s)	-			-	
1.015	79.400	0.000	0.0	57	0.0	25	1.07	2.52	100.2	2.6
	78.228 77.930	0.000	0.0	5 8	0.0		0.25			
1.016	77.700	0.000	0.0	65	0.0	38	0.68	1.23	48.8	3.0

7 10	APPENDIX L – IW WATERMAIN & WASTEWATER DE	MAND CALCULATIONS
/.IU	APPENDIX L — IW WAIFRMAIN & WASIFWAIFR DE	MIAND CALCULATIONS

Project Name:	St Patrick's Park
Project Reference:	1668
Calculation Date:	16/02/2021
Calculation By:	NM

CALCULATIONS - PROPOSED DEVELOPMENT

Accomodation Schedule		Average Occupancy Rate	Population (P)	Daily Water Consumption per Capita (G)	Daily Water Consumption (L/s)
Existing Residential Units (unit)	0	2.7 people / unit	0	150 L/capita/day	0.000
Existing Commercial area (m2)	0	1 person / 25 m2	0	50 L/day/capita	0.000
Existing Light Industrial area (m2)	0	1 person / 33 m2	0	50 L/day/capita	0.000
Existing Retail area (m2)	0	1 person / 100 m2	0	30 L/day/capita	0.000
Proposed Residential Units (unit)	7	2.7 people / unit	19	150 L/capita/day	0.033
Proposed Commercial area (m2)	0	1 person / 25 m2	0	50 L/day/capita	0.000
Proposed Light Industrial area (m2)	0	1 person / 33 m2	0	50 L/day/capita	0.000
Proposed Creche (m2)	0	1 person / 20 m2	0	40 L/day/capita	0.000
Proposed Retail area (m2)	0	1 person / 100 m2	0	30 L/day/capita	0.000

Coefficients for Subject Site		
Infiltration rate for Existing properties (I)	=	20 %
Infiltration rate for New properties (I)	=	10 %
Commercial Peaking Factor (Pfdom,ind)	=	4.50 (up to 5.5Ha area)
Domestic Peaking Factor (Pfdom)	=	6.00 (0-750 Dwellings)
Trade Wastewater Flow Peaking Factor (Pftrade)	=	3.00 (No measured Data)
Gross Site Area	=	1.88 ha
C factor (Cv x Cr)	=	0.80
Rainfall intensity (i) for sub-catchment greater	=	7.00 mm/hr
than 400m2 for 2 years Return Period		
Storm Design event peak rate runoff	=	29.27 l/s
(Q = 2.78 x C x I x A - Modified Rational Method)		
SW Allowance (1.5% of Gross Area)	=	0.44

Foul Wastewater Discharge			
Domestic Dry Weather Flow (P x G + I)	=	0.04 l/s	
Design Foul Flow (Eqn1 + SW Allowance)	=	0.66 l/s	
Commercial/Retail Dry Weather Flow (P x G + I)	=	0.00 l/s	
Design Foul Flow (Eqn1)	=	0.00 l/s	
Industrial Dry Weather Flow (P x G + I)	=	0.00 l/s	
Design Foul Flow (Eqn1)	=	0.00 l/s	
Total Discharge		0.66 l/s	

Water Demand			
Domestic	=	0.03 l/s	
Average Day/Peak Week Domestic Demand (1.25 times average)	=	0.04 l/s	
Domestic and Industrial Demand		0.00	
Normal Demand (Industrial/ Commercial Demand over 8 hours)	=	0.00 l/s	
Total Peak Demand		0.04 l/s	

7.11 APPENDIX M – IW CONFIRMATION OF FEASIBILITY

Noel Mahon

Unit 2C Nutgrove Office Park Rathfarnham Dublin 14 Dublin D14CR20

29 April 2021

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: CDS21002476 pre-connection enquiry - Subject to contract | Contract denied Connection for Housing Development of 7 unit(s) at St.Patricks Park, Rathangan, Kildare

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at St.Patricks Park, Rathangan, Kildare (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH TO PROCEED.
Water Connection	Feasible without infrastructure upgrade by Irish Water
Wastewater Connection	Feasible without infrastructure upgrade by Irish Water
SITE SPECIFIC COMMENTS	
Water Connection	The proposed development indicates that an important Irish Water asset is present on the site. In advance of obtaining final planning permission the developer is requested to contact Irish Water to agree the required separation distances or proposed diversion associated with the infrastructure.
Wastewater Connection	The proposed development indicates that an important Irish Water asset is present on the site. In advance of obtaining final planning permission the developer is requested to contact Irish Water to agree the required separation distances or proposed diversion associated with the infrastructure.

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Lara Nagle from the design team on mkomso@water.ie For further information, visit www.water.ie/connections.

Yours sincerely,

Gronne Hassis

Yvonne Harris

Head of Customer Operations

THE END